Show the code
### Simulation time!!
library(lavaan) ## < package to generate the values.
library(broom)
mod1 < 'depression ~ 0.5*selfSteem + 0.8*rumination + 0*numberCandies'
generated < simulateData(mod1,
meanstructure = TRUE,
sample.nobs = 100,
seed = 12)
fitModel < lm(depression ~ selfSteem +
rumination +
numberCandies,
data = generated)
gt(tidy(fitModel),
rownames_to_stub= FALSE) >
fmt_number(decimals = 2)
 1
 I’m specifying the “population model”.
 2
 This line creates the simulated values. I’m generating 100 random values.
 3

Estimating the model using function
lm()
.
term  estimate  std.error  statistic  p.value 

(Intercept)  −0.04  0.09  −0.41  0.68 
selfSteem  0.37  0.10  3.80  0.00 
rumination  0.75  0.10  7.81  0.00 
numberCandies  0.03  0.09  0.28  0.78 